George Yang

Generalized Universal Chord Theorem

If a function f is continuous on the closed interval [a,b] and satisfies f(a)=f(b), then given $n \in \mathbb{N}$, there exists $x \in [a,b]$ such that $f(x)=f(x+\frac{b-a}{n})$.

We generalize and prove that if a function f is continuous on the closed interval [a, b] and satisfies f(a) = f(b), then for all $\epsilon < b - a$, there exists $\epsilon \in [a, b]$ such that $\epsilon \in [a, b]$ such tha

Proof. Let $0 < \epsilon < b - a$. We have 2 cases: 1) f is the constant function. 2) f is not the constant function. **Case 1** is trivial, as we could pick x = a, add ϵ to it to get y, and we'd know that $f(a) = f(a + \epsilon)$.

On to Case 2. We begin with a lemma.

Lemma 1: If f(a) = f(b), f is not a constant function, and f is continuous, we can find a maximum or a minimum on [a,b] that is not f(a) or f(b).

It suffices to show that if we *cannot* find a maximum or a minimum on [a,b] that is not f(a) or f(b), and if f(a) = f(b), then f is a constant function. So, suppose that we *cannot* find a maximum or a minimum on [a,b] that is not f(a) or f(b), and f(a) = f(b). Then, f must achieve both a maximum and a minimum at f(a) and f(b), as this is a closed interval. So, for all $x \in [a,b]$,

$$f(b) = f(a) \le x \le f(b) = f(a)$$

So, for all $x \in [a, b]$,

$$x = f(b) = f(a)$$

Thus, *f* is constant.

So, suppose that f is not the constant function. Then, we can find a maximum or a minimum on [a, b] that is not f(a) or f(b).

Using Lemma 1, we now we have 2 cases:

- 2.1) f achieves a maximum on (a, b).
- 2.2) f achieves a minimum on (a, b).

We prove Case 2.1, and Case 2.2 follows by symmetry. Suppose f achieves a maximum on (a, b). Call the pre-image of that maximum value $c \in (a, b)$.

I again split this into two cases:

- 2.1.a) There exists a closed neighborhood around this maximum that is constant such that the length of this neighborhood is greater than or equal to ϵ .
- 2.1.b) The converse of Case 2.1.a.

Case 2.1.a:

Suppose there exists a closed neighborhood around this maximum that is constant, such that the length of this neighborhood is greater than or equal to ϵ . Then, there exists $[c,d] \subseteq [a,b]$, such that for all $0 < \eta \le d - c$, if $|x - y| \le \eta$, f(x) = f(y), and $\epsilon \le d - c$. So, since $\epsilon \le d - c$, we could choose an x,y in this interval such that $|x - y| = \epsilon \le d - c$. If $\epsilon = d - c$, then we would be done, as we'd have found an y, x such that f(x) = f(y). If $\epsilon < d - c$, by the Archimidean Property, we find an η in between ϵ and d - c. So f(x) = f(y). So, we'd have found an x, and a $y = x + \epsilon$ such that $f(x) = f(y) = f(x + \epsilon)$.

Case 2.1.b:

Consider the function

$$g(x) = f(x) - f(x + \epsilon)$$

It suffices to show that there exists an $x \in [a, b]$ such that g(x) = 0. We observe that g is a continuous function on $[a, b - \epsilon]$, as f(x) is continuous on [a, b], and f(x) = 0.

We know f achieves a maximum on (a, b). Call the pre-image of that maximum value $c \in (a, b)$.

Since there may be multiple maxima, use the Archimidean property to find a number, ϵ_2 , that satisfies the following properties:

- $\epsilon_2 > d c$, if there is a closed constant neighborhood [c,d], where $[c,d] \subseteq [a,b]$, such that for all $0 < \eta \le d c$, if $|x y| \le \eta$, f(x) = f(y), and $\epsilon > d c$. Note that the $\epsilon > d c$ is what differentiates this from Case 2.1.a.
- $0 < \epsilon_2 < \epsilon$
- $0 < \epsilon_2 < |k c|$, where f(k) is any other maximum.

That is, we restrict our attention to the interval such that our maximum at f(c) is greater than both $f(c + \epsilon_2)$ and $f(c - \epsilon_2)$.

Then,

$$f(c) > f(c + \epsilon_2)$$

$$f(c) - f(c + \epsilon_2) > 0$$

$$g(c) > 0$$

Similarly,

$$f(c) > f(c - \epsilon_2)$$

$$f(c) - f(c - \epsilon_2) > 0$$

$$-g(c - \epsilon_2) > 0$$

$$g(c - \epsilon_2) < 0$$

So, we have found two elements, $c, c - \epsilon_2 \in [a, b - \epsilon_2]$, such that g evaluated at these two elements is greater than and less than 0. Thus, by IVT, there exists a $d \in [c - \epsilon_2, c]$ such that g(d) = 0. The minimum proof (Case 2.2) is the exact same as the above, but we swap inequality signs. So, we've shown if a function f is continuous on the closed interval [a, b] and satisfies f(a) = f(b), then for all $\epsilon < b - a$, there exists $x \in [a, b]$ such that $f(x) = f(x + \epsilon)$. $\{\epsilon | n \in \mathbb{N}, \epsilon = \frac{b-a}{n}\}$ is a subset of $\{\epsilon | \epsilon \in \mathbb{R}, 0 < \epsilon < b - a\}$, so we've proved the universal chord theorem.