George Yang

Generalized Universal Chord Theorem

If a function f is continuous on the closed interval [a, b] and satisfies f(a) = f(b), then given
n € N, there exists x € [a,b] such that f(x) = f(x + bn;”)

We generalize and prove that if a function f is continuous on the closed interval [a, b] and satisfies
f(a) = f(b), then for all € < b — a, there exists x € [a,b] such that f(x) = f(x + €).

Proof. Let0 < € < b —a. We have 2 cases: 1) f is the constant function. 2) f is not the constant function.
Case 1 is trivial, as we could pick x = g, add € to it to get v, and we’d know that f(a) = f(a + €).

On to Case 2. We begin with a lemma.

Lemma 1: If f(a) = f(b), f is not a constant function, and f is continuous, we can find

a maximum or a minimum on [a, b] that is not f(a) or f(b).

It suffices to show that if we cannot find a maximum or a minimum on [a, b] that is
not f(a) or f(b), and if f(a) = f(b), then f is a constant function. So, suppose that we
cannot find a maximum or a minimum on [a, b] thatisnot f(a) or f(b), and f(a) = f(b).
Then, f must achieve both a maximum and a minimum at f(a) and f(b), as this is a
closed interval. So, for all x € [a, b],

fb)=f(a) <x < f(b) = f(a)

So, for all x € [a, D],
x = f(b) = f(a)

Thus, f is constant.

So, suppose that f is not the constant function. Then, we can find a maximum or a minimum on [a, b]
that is not f(a) or f(b).

Using Lemma 1, we now we have 2 cases:
2.1) f achieves a maximum on (a, b).
2.2) f achieves a minimum on (a, b).

We prove Case 2.1, and Case 2.2 follows by symmetry. Suppose f achieves a maximum on (a, b). Call
the pre-image of that maximum value ¢ € (a, b).

I again split this into two cases:

2.1.a) There exists a closed neighborhood around this maximum that is constant such that the length of
this neighborhood is greater than or equal to €.

2.1.b) The converse of Case 2.1.a.
Case 2.1.a:



Suppose there exists a closed neighborhood around this maximum that is constant, such that the length
of this neighborhood is greater than or equal to €. Then, there exists [c,d] C [a, ], such that for all
O<n<d-cif|lx-y| <n, f(x) = f(y),and € < d —c. So, since € < d — c, we could choose an x, y
in this interval such that |[x —y| = € < d —c. If € = d — ¢, then we would be done, as we’d have found
an y, x such that f(x) = f(y). If e < d — c, by the Archimidean Property, we find an 1 in between € and
d—c.So f(x) = f(y). So, we'd have found an x, and a y = x + € such that f(x) = f(y) = f(x + €).

Case 2.1.b:
Consider the function
gx)=f(x) - f(x+¢€)
It suffices to show that there exists an x € [a, b] such that g(x) = 0. We observe that g is a continuous
function on [a, b — €], as f(x) is continuous on [a, b], and —f(x + €) is continuous on [a — €, b — €].

We know f achieves a maximum on (a, b). Call the pre-image of that maximum value c € (a, b).

Since there may be multiple maxima, use the Archimidean property to find a number, €, that satisfies
the following properties:

. €2 > d — ¢, if there is a closed constant neighborhood [c, d], where [c, d] C [a, b], such that for all
0<n<d-cif|x—y| <n, f(x) = f(y),and € > d —c. Note that the € > d — ¢ is what differentiates
this from Case 2.1.a.

. 0 < €2 < |k = c|, where f(k) is any other maximum.

That is, we restrict our attention to the interval such that our maximum at f(c) is greater than both
f(c+e2)and f(c — e).

Then,
fle)> f(c+e)
fle)=f(c+e)>0
g(c)>0
Similarly,

fle)> flc—er)
fle)— flc—€2) >0
—g(c—€2)>0
glc—e€2) <0

So, we have found two elements, c,c — €2 € [a,b — €3], such that g evaluated at these two elements is
greater than and less than 0. Thus, by IVT, there existsa d € [c — €, c] such that g(d) = 0. The minimum
proof (Case 2.2) is the exact same as the above, but we swap inequality signs. So, we’ve shown if a
function f is continuous on the closed interval [a, b] and satisfies f(a) = f(b), then for all e < b — a,
there exists x € [a,b] such that f(x) = f(x+¢€). {e|n e N, e = b%”} isasubsetof {ele e R,0 < e <b—a},
so we’ve proved the universal chord theorem.



