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Generalized Universal Chord Theorem

If a function 𝑓 is continuous on the closed interval [𝑎, 𝑏] and satisfies 𝑓 (𝑎) = 𝑓 (𝑏), then given
𝑛 ∈ N, there exists 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑏−𝑎

𝑛 ).

We generalize and prove that if a function 𝑓 is continuous on the closed interval [𝑎, 𝑏] and satisfies
𝑓 (𝑎) = 𝑓 (𝑏), then for all 𝜖 < 𝑏 − 𝑎, there exists 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥) = 𝑓 (𝑥 + 𝜖).

Proof. Let 0 < 𝜖 < 𝑏 − 𝑎. We have 2 cases: 1) 𝑓 is the constant function. 2) 𝑓 is not the constant function.
Case 1 is trivial, as we could pick 𝑥 = 𝑎, add 𝜖 to it to get 𝑦, and we’d know that 𝑓 (𝑎) = 𝑓 (𝑎 + 𝜖).

On to Case 2. We begin with a lemma.

Lemma 1: If 𝑓 (𝑎) = 𝑓 (𝑏), 𝑓 is not a constant function, and 𝑓 is continuous, we can find
a maximum or a minimum on [𝑎, 𝑏] that is not 𝑓 (𝑎) or 𝑓 (𝑏).

It suffices to show that if we cannot find a maximum or a minimum on [𝑎, 𝑏] that is
not 𝑓 (𝑎) or 𝑓 (𝑏), and if 𝑓 (𝑎) = 𝑓 (𝑏), then 𝑓 is a constant function. So, suppose that we
cannot find a maximum or a minimum on [𝑎, 𝑏] that is not 𝑓 (𝑎) or 𝑓 (𝑏), and 𝑓 (𝑎) = 𝑓 (𝑏).
Then, 𝑓 must achieve both a maximum and a minimum at 𝑓 (𝑎) and 𝑓 (𝑏), as this is a
closed interval. So, for all 𝑥 ∈ [𝑎, 𝑏],

𝑓 (𝑏) = 𝑓 (𝑎) ≤ 𝑥 ≤ 𝑓 (𝑏) = 𝑓 (𝑎)

So, for all 𝑥 ∈ [𝑎, 𝑏],
𝑥 = 𝑓 (𝑏) = 𝑓 (𝑎)

Thus, 𝑓 is constant.

So, suppose that 𝑓 is not the constant function. Then, we can find a maximum or a minimum on [𝑎, 𝑏]
that is not 𝑓 (𝑎) or 𝑓 (𝑏).

Using Lemma 1, we now we have 2 cases:

2.1) 𝑓 achieves a maximum on (𝑎, 𝑏).

2.2) 𝑓 achieves a minimum on (𝑎, 𝑏).

We prove Case 2.1, and Case 2.2 follows by symmetry. Suppose 𝑓 achieves a maximum on (𝑎, 𝑏). Call
the pre-image of that maximum value 𝑐 ∈ (𝑎, 𝑏).

I again split this into two cases:

2.1.a) There exists a closed neighborhood around this maximum that is constant such that the length of
this neighborhood is greater than or equal to 𝜖.

2.1.b) The converse of Case 2.1.a.

Case 2.1.a:
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Suppose there exists a closed neighborhood around this maximum that is constant, such that the length
of this neighborhood is greater than or equal to 𝜖. Then, there exists [𝑐, 𝑑] ⊆ [𝑎, 𝑏], such that for all
0 < 𝜂 ≤ 𝑑 − 𝑐, if |𝑥 − 𝑦 | ≤ 𝜂, 𝑓 (𝑥) = 𝑓 (𝑦), and 𝜖 ≤ 𝑑 − 𝑐. So, since 𝜖 ≤ 𝑑 − 𝑐, we could choose an 𝑥, 𝑦

in this interval such that |𝑥 − 𝑦 | = 𝜖 ≤ 𝑑 − 𝑐. If 𝜖 = 𝑑 − 𝑐, then we would be done, as we’d have found
an 𝑦, 𝑥 such that 𝑓 (𝑥) = 𝑓 (𝑦). If 𝜖 < 𝑑 − 𝑐, by the Archimidean Property, we find an 𝜂 in between 𝜖 and
𝑑 − 𝑐. So 𝑓 (𝑥) = 𝑓 (𝑦). So, we’d have found an 𝑥, and a 𝑦 = 𝑥 + 𝜖 such that 𝑓 (𝑥) = 𝑓 (𝑦) = 𝑓 (𝑥 + 𝜖).

Case 2.1.b:

Consider the function
𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑥 + 𝜖)

It suffices to show that there exists an 𝑥 ∈ [𝑎, 𝑏] such that 𝑔(𝑥) = 0. We observe that 𝑔 is a continuous
function on [𝑎, 𝑏 − 𝜖], as 𝑓 (𝑥) is continuous on [𝑎, 𝑏], and − 𝑓 (𝑥 + 𝜖) is continuous on [𝑎 − 𝜖, 𝑏 − 𝜖].

We know 𝑓 achieves a maximum on (𝑎, 𝑏). Call the pre-image of that maximum value 𝑐 ∈ (𝑎, 𝑏).

Since there may be multiple maxima, use the Archimidean property to find a number, 𝜖2, that satisfies
the following properties:

• 𝜖2 > 𝑑 − 𝑐, if there is a closed constant neighborhood [𝑐, 𝑑], where [𝑐, 𝑑] ⊆ [𝑎, 𝑏], such that for all
0 < 𝜂 ≤ 𝑑− 𝑐, if |𝑥− 𝑦 | ≤ 𝜂, 𝑓 (𝑥) = 𝑓 (𝑦), and 𝜖 > 𝑑− 𝑐. Note that the 𝜖 > 𝑑− 𝑐 is what differentiates
this from Case 2.1.a.

• 0 < 𝜖2 < 𝜖

• 0 < 𝜖2 < |𝑘 − 𝑐 |, where 𝑓 (𝑘) is any other maximum.

That is, we restrict our attention to the interval such that our maximum at 𝑓 (𝑐) is greater than both
𝑓 (𝑐 + 𝜖2) and 𝑓 (𝑐 − 𝜖2).

Then,

𝑓 (𝑐) > 𝑓 (𝑐 + 𝜖2)
𝑓 (𝑐) − 𝑓 (𝑐 + 𝜖2) > 0

𝑔(𝑐) > 0

Similarly,

𝑓 (𝑐) > 𝑓 (𝑐 − 𝜖2)
𝑓 (𝑐) − 𝑓 (𝑐 − 𝜖2) > 0
−𝑔(𝑐 − 𝜖2) > 0
𝑔(𝑐 − 𝜖2) < 0

So, we have found two elements, 𝑐, 𝑐 − 𝜖2 ∈ [𝑎, 𝑏 − 𝜖2], such that 𝑔 evaluated at these two elements is
greater than and less than 0. Thus, by IVT, there exists a 𝑑 ∈ [𝑐− 𝜖2, 𝑐] such that 𝑔(𝑑) = 0. The minimum
proof (Case 2.2) is the exact same as the above, but we swap inequality signs. So, we’ve shown if a
function 𝑓 is continuous on the closed interval [𝑎, 𝑏] and satisfies 𝑓 (𝑎) = 𝑓 (𝑏), then for all 𝜖 < 𝑏 − 𝑎,
there exists 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥) = 𝑓 (𝑥 + 𝜖). {𝜖 |𝑛 ∈ N, 𝜖 = 𝑏−𝑎

𝑛 } is a subset of {𝜖 |𝜖 ∈ R, 0 < 𝜖 < 𝑏 − 𝑎},
so we’ve proved the universal chord theorem.

□
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